清空記錄
歷史記錄
取消
清空記錄
歷史記錄
1、引言
自高光譜圖像概念被首次提出后,:到目前該技術(shù)已發(fā)展為覆蓋上百條光譜通道、像素點的攜帶波譜信息量豐富的高分辨檢測技術(shù),近年來,高光譜成像技術(shù)因容納龐大的數(shù)據(jù)信息使其在作物識別、養(yǎng)分診斷、葉片光譜特征提取、生態(tài)物理參數(shù)反演與提取、農(nóng)業(yè)遙感信息模型建立及災(zāi)害檢測等方面已取得了廣泛的研究進(jìn)展
茶葉是一種多年生農(nóng)業(yè)經(jīng)濟作物,具有抗菌、消炎、抗癌、抗突變、抗氧化、防輻射、調(diào)節(jié)血脂代謝等藥理功能。隨著消費者健康意識的增強和茶葉保健功能的逐漸揭示,茶葉綜合應(yīng)用范圍也日益擴大。本文將對此簡述高光譜成像技術(shù)成像機理和反演原理,綜述高光譜成像技術(shù)在茶葉領(lǐng)域的相關(guān)應(yīng)用。
2、高光譜技術(shù)簡述
高光譜成像技術(shù),是一種新興的集數(shù)字?jǐn)z像機和光譜攝制于一體的無接觸式檢測技術(shù),具有高效、實時、在線等無損檢測特點。其中,待測物影像信息借助成像光譜儀完成提取,由于空間掃描由器件的固體自掃描完成,像元凝視時間長,從而獲取圖像的空間分辨率較高,與此同時,成像光譜儀同步采集待測物物質(zhì)結(jié)構(gòu)及化學(xué)組成對應(yīng)的光譜信息,高光譜成像系統(tǒng)在納米級的光譜分辨率上,以幾十至數(shù)百個波長同時對物體連續(xù)成像,實現(xiàn)物體空間信息、光譜信息和光強度信息的同步獲取,從而構(gòu)建三維數(shù)據(jù)空間體。光譜采集方式包含反射、透射、散射和熒光4種模式,其光譜覆蓋面包含紫外、可見光、近紅外和中紅外區(qū)域,所獲波段信息量大、分辨率高、連續(xù)性強,可為待測物屬性分析與判斷提供依據(jù)。在既定光源條件下,樣品經(jīng)成像光譜儀采集光譜數(shù)據(jù)后傳輸?shù)絇C機進(jìn)行相關(guān)數(shù)據(jù)處理,數(shù)據(jù)采集部位可由移動平臺控制實現(xiàn)(圖1)。
圖1 高光譜成像系統(tǒng)檢測原理圖
通常,高光譜成像技術(shù)對目標(biāo)產(chǎn)物的成功反演大致需要2個階段,即光譜圖像信息前處理和提取信息與目標(biāo)產(chǎn)物擬合預(yù)測。其中,前者包含圖像預(yù)處理技術(shù)、切趾處理技術(shù)、光譜復(fù)原技術(shù)、相位校正技術(shù)、光譜定標(biāo)技術(shù)等,后者可通過主成分分析、灰度共生矩陣等方法提取特征波段變量作為輸入變量,然后結(jié)合支持向量機(SVM)、偏最小二乘法(PLS)、神經(jīng)網(wǎng)絡(luò)、遺傳算法、模糊邏輯等算法構(gòu)建預(yù)測模型,實現(xiàn)對目標(biāo)變量的成功反演。
3、高光譜成像技術(shù)在茶葉中的應(yīng)用
高光譜成像技術(shù)在茶葉中的應(yīng)用尚處于試驗發(fā)展階段,通常采用對原始光譜信息前處理后,利用原始光譜反射率、一階導(dǎo)數(shù)光譜反射率、光譜紋理特征參數(shù)及相應(yīng)轉(zhuǎn)換等作為自變量,運用偏最小二乘法、徑向基函數(shù)(RBF)、支持向量機、多元回歸等算法,建立茶鮮葉葉綠素、成茶品質(zhì)指標(biāo)等為因變量的預(yù)測模型,通過反演,對茶樹的生長和茶葉品質(zhì)及茶類識別進(jìn)行估算和檢測。目前相關(guān)研究主要集中于茶樹栽培管理監(jiān)測、茶葉等級劃分和茶類識別。
3.1 栽培管理監(jiān)測
葉綠素是植物葉片的基本組成物質(zhì),通過對光能的吸收、傳遞和轉(zhuǎn)化等作用實現(xiàn)對植物生長發(fā)育營養(yǎng)來源的供應(yīng),其含量的高低可間接反映植物生長狀況、光合作用及抗逆性能力,因此,葉綠素可作為植物生長和環(huán)境脅迫等方面的敏感指示器;同時,葉綠素是綠茶外觀和葉底的主要呈色物質(zhì),對綠茶或其他茶類品質(zhì)的形成具有重要作用,因此,對其含量及分布的在線、無損檢測對茶樹生長勢檢測、估產(chǎn)、營養(yǎng)診斷、施肥及茶葉加工等方面具有重要的指導(dǎo)意義。葉綠素含量檢測通常采用分光光度法,但該方法檢測時存在耗時、費力、有損等不足,無損檢測方法多集中于近紅外光譜法、葉綠素?zé)晒鈾z測法等。近紅外光譜是基于特定波長范圍下對應(yīng)化合物基團(如C-H、N-H、O-H等)對光能吸收產(chǎn)生的圖譜,而熒光檢測是基于物質(zhì)原子或分子吸收電磁輻射后受激發(fā)而發(fā)射出的特征輻射形成的檢測方法,兩者均存在吸收強度弱、檢測范圍局限等缺點。此外,近紅外光譜檢測和熒光檢測技術(shù)的光譜采集方式實則為高光譜成像技術(shù)光譜采集方式中的2種,而該技術(shù)光譜采集中其他采集方式,如透射、散射等以及從紫外到中紅外的更寬的光譜覆蓋面將會獲取待測物更多的目標(biāo)信息,因此融合光譜數(shù)據(jù)和圖像數(shù)據(jù)信息的高光譜成像技術(shù)可以彌補常規(guī)方法對葉面葉綠素含量及其分布檢測的不足。該技術(shù)在柑橘、油菜、南瓜等農(nóng)作物葉片葉綠素含量及分布進(jìn)行了成功的反演,但在茶葉領(lǐng)域的相關(guān)研究相對較少。
圖2 第5、6片葉綠素含量與原始光譜和一階導(dǎo)數(shù)光譜間的相關(guān)系數(shù)圖
孔慶波等研究發(fā)現(xiàn),鐵觀音第5、第6片葉的葉綠素含量與716nm處的原始光譜反射率(R716)和640nm處的一階導(dǎo)數(shù)光譜反射率(DV640)具有相對較高的相關(guān)系數(shù),其中單變量模型以DV640建立的逆函數(shù)模型最佳,擬合R2值最大;趙杰文等利用高光譜分析茶樹葉片葉綠素含量及其分布發(fā)現(xiàn),采用的7種光譜圖像數(shù)據(jù)處理算法中,二次土壤調(diào)節(jié)植被指數(shù)(MSAVI2)算法提取的特征參數(shù)與葉綠素參考測量結(jié)果建立的回歸預(yù)測模型具有較好的校正和預(yù)測結(jié)果,在去除光譜本身分辨率、葉緣起伏造成反射不均等因素后,基于MSAVI2預(yù)測模型也可較為準(zhǔn)確的估算出葉表面葉綠素分布情況;王開亮對葉綠素含量預(yù)測和分布的相似研究發(fā)現(xiàn),依據(jù)高光譜數(shù)據(jù)的光譜信息建立的無信息變量消除連續(xù)投影PLS和聯(lián)合區(qū)間偏最小二乘法(siPLS)預(yù)測模型對葉綠素含量和分布具有較好的預(yù)測效果,而依據(jù)光譜數(shù)據(jù)圖像信息,采用主成分分析選取特征波長后,依據(jù)灰度統(tǒng)計矩算法建立的葉綠素含量預(yù)測優(yōu)于灰度共生矩陣預(yù)測模型。
此外,茶葉中氮素是合成蛋白質(zhì)和葉綠素的重要組成部分,通過參與酶的合成直接或間接的影響茶樹代謝和生長發(fā)育,尤其是對茶葉氨基酸種類和含量具有重要作用,最終影響成茶香氣種類和滋味鮮爽度,因此,茶樹氮素營養(yǎng)狀況的檢測也是茶樹栽培管理的重要內(nèi)容之一。目前,傳統(tǒng)氮素測量方法有凱氏定氮法,測量過程較為繁瑣,其余方法有肥料窗口法和葉色卡片法,但都屬于定性和半定量方法,而之后研究開發(fā)的葉綠素儀也受作物品種、成熟階段、測量葉位等差異影響。有研究指出,水稻葉片氮含量的敏感波段為綠光(525~605nm)、黃光(605~655nm)、短波近紅外光(750~1100nm);胡永光等研究發(fā)現(xiàn),在可見-近紅外光譜范圍內(nèi),去除1350~1400、1800~1920、2400~2500nm波段后,通過一階導(dǎo)數(shù)與滑動平均濾波相結(jié)合的預(yù)處理方法,然后結(jié)合PCA建立的PLSR模型對茶樹鮮葉全氮量預(yù)測效果最好?;谙嗨圃?,高光譜成像技術(shù)茶鮮葉全氮量的測量將更具客觀性和整體性。
3.2 病蟲害管理監(jiān)測
茶樹遭遇病蟲害侵襲后,葉面部分區(qū)域的色素含量或完整性會發(fā)生變化形成病斑,而未受侵害區(qū)域仍保持正常色澤,且侵害部位隨危害程度呈階段性變化。如茶炭疽病感染后,茶葉病斑由暗綠色向褐色(或紅褐色)最后呈灰白色變化,發(fā)病部位由葉緣(或葉尖)沿葉脈蔓延擴大;茶尺蠖幼蟲取食嫩葉成花斑,稍大后咬食葉片成“C”型,而后開始取食全葉,隨著成蟲密度增大,為害部位由嫩葉、老葉至嫩莖擴散。由此,對病蟲害的早期診斷與預(yù)防對保證茶葉品質(zhì)和產(chǎn)量顯得尤為重要。目前,傳統(tǒng)的檢測方法需要人工觀察氣候條件或葉片變化以及對各種病蟲害的系統(tǒng)進(jìn)行識別,這對觀察人員的專業(yè)素養(yǎng)要求較高,也存在工作量大、周期長、信息反饋滯后等缺點,而常規(guī)光譜技術(shù)采集信息包含整體區(qū)域的光譜反射值,影響分析和建模的準(zhǔn)確性。高光譜成像技術(shù)可以對目標(biāo)的影像信息和光譜信息進(jìn)行同步采集,可更為直觀、準(zhǔn)確、動態(tài)地分析特定區(qū)域的物質(zhì)結(jié)構(gòu)、化學(xué)組成及危害程度,現(xiàn)已在水稻穗瘟病害程度分級、菜青蟲生命狀態(tài)檢測、芒果果蠅侵害程度識別等農(nóng)作物病蟲害檢測中得到應(yīng)用。
圖1 不同受害程度茶樹葉片光譜反射率
劉建雄等對茶尺蠖啃食的茶園高光譜對比分析發(fā)現(xiàn),茶園部分光譜特征參數(shù)與葉面積指數(shù)存在相關(guān)性,其中以紅邊峰區(qū)一階導(dǎo)數(shù)積分值的擬合回歸模型的相關(guān)系數(shù)最高,達(dá)0.995,所建立預(yù)測模型的預(yù)測值與實際值相關(guān)系數(shù)達(dá)0.93,平均相對誤差為4.46%,由此提出可以利用高光譜遙感技術(shù)對產(chǎn)業(yè)化和規(guī)模化茶園的茶尺蠖危害程度進(jìn)行監(jiān)測。伍南等研究表明,利用高光譜參數(shù)反演油茶炭疽病病情具有可行性;王曉慶等研究發(fā)現(xiàn),茶樹崇枇71-1受炭疽病脅迫程度與葉片高光譜反射率存在敏感波段為742~974nm和1374~2500nm,而與光譜反射率的一階微分轉(zhuǎn)換后又存在2個敏感波段,分別為715~763nm和776~778nm,且基于一階微分值的植被指數(shù)(Rg-Rr)/(Rg+Rr)對炭疽病危害程度具有較好的預(yù)測效果。綜上,高光譜成像技術(shù)在茶樹病蟲害的應(yīng)用研究僅涉及茶尺蠖和茶炭疽病,因此其具有很大的發(fā)展前景。而茶樹受病害和蟲害(食葉類、吸汁類)侵襲后的病理特征所表現(xiàn)出的特殊光譜反射率和圖像紋理參數(shù),為病蟲害程度的預(yù)測和綜合防治提供了數(shù)據(jù)基礎(chǔ),也為下一步開展田間病蟲害提供了重要的理論依據(jù)和指導(dǎo),但田間茶園冠層高光譜值受外界干擾因素較多,其診斷模型的推廣還需進(jìn)一步校正。
3.3 生產(chǎn)加工監(jiān)測
茶葉生產(chǎn)加工的在線監(jiān)測為實現(xiàn)生產(chǎn)連續(xù)化、自動化乃至智能化奠定了基礎(chǔ),目前茶葉加工過程仍側(cè)重于工藝改善和品質(zhì)成分的化學(xué)檢測,而儀器化的在線監(jiān)測技術(shù)仍處于發(fā)展階段。已有的茶葉加工在線監(jiān)測多為電子鼻技術(shù)、機器視覺、近紅外等,而針對高光譜成像技術(shù)的茶葉加工監(jiān)測鮮有報道。含水量是保證茶葉生產(chǎn)加工有序進(jìn)行和成茶品質(zhì)等級的重要評價指標(biāo),如綠茶殺青葉失水快慢及殺青老嫩程度、紅茶萎調(diào)葉失水快慢及程度等都將直接制約后續(xù)做形、干燥工序,并對成茶色澤、香氣、滋味等內(nèi)含品質(zhì)產(chǎn)生重要影響,因此,含水量的實時檢測對茶葉生產(chǎn)的連續(xù)化和自動化意義重大。實際生產(chǎn)中,茶葉含水量的檢測以眼觀、手摸等感官為主,經(jīng)驗性較強,而基于電特性參數(shù)和近紅外光譜的檢測技術(shù)具有一定局限性,如基于電特性參數(shù)的預(yù)測模型對原料外觀形狀、溫度、壓緊程度、測試電頻、制品含水量范圍等要求較高,檢測范圍和精準(zhǔn)度較差,近紅外光譜主要檢測目標(biāo)成分的光譜反射率變化,但在實際生產(chǎn)加工中,茶葉失水同時伴隨外觀紋理特征的變化(如外形尺寸、色澤等),需要機器視覺輔助檢測,而高光譜成像技術(shù)的應(yīng)用正好綜合了這兩者的優(yōu)勢。
李浬從龍井茶近紅外高光譜圖像中遴選出特征波段,并分別使用灰度共生矩陣法(GLCM)、灰度游程法(GLRLM)及三維Gabor過濾器法(TDGF)提取紋理特征值,基于光譜特征和紋理特征分別采用主成分分析與偏最小二乘法回歸結(jié)合模型和連續(xù)投影分析與偏最小二乘法回歸結(jié)合模型對其含水率進(jìn)行預(yù)測,取得了良好的預(yù)測效果。陳培培采用主成分分析法提取綠茶殺青葉料特征波長,然后根據(jù)共生矩陣方法提取出6個灰度特征值和5個紋理特征值,最后綜合灰度和紋理特征值進(jìn)行主成分回歸、神經(jīng)網(wǎng)絡(luò)以及SVM回歸分析預(yù)測殺青葉含水量,結(jié)果表明SVM回歸模型效果較好,且相關(guān)系數(shù)為0.8566、均方根誤差為0.0401。茶葉加工過程在制品外觀紋理和品質(zhì)成分的變化為高光譜成像技術(shù)的應(yīng)用奠定了物質(zhì)基礎(chǔ),今后可促進(jìn)該技術(shù)在茶葉領(lǐng)域更多后續(xù)研究的開展,實現(xiàn)生產(chǎn)效率和生產(chǎn)品質(zhì)的提高,以滿足不同消費需求。
4、總結(jié)
茶葉含有多種對人體有益的功能成分,具有較高的開發(fā)和實用價值。本文簡述了高光譜成像技術(shù)的檢測原理,分類綜述了該技術(shù)在茶葉栽培管理、病蟲害監(jiān)測等方面的應(yīng)用及不足,并提出了相應(yīng)的解決措施
下一章,我們將再講述高光譜成像技術(shù)在生產(chǎn)加工、等級劃分等方面的應(yīng)用及不足,并提出相應(yīng)的解決措施,同時再對其在茶葉領(lǐng)域的發(fā)展進(jìn)行展望,以期為促進(jìn)茶葉精細(xì)化發(fā)展提供參考。
推薦:
便攜式地物光譜儀iSpecField-NIR/WNIR
專門用于野外遙感測量、土壤環(huán)境、礦物地質(zhì)勘探等領(lǐng)域的最新明星產(chǎn)品,由于其操作靈活、便攜方便、光譜測試速度快、光譜數(shù)據(jù)準(zhǔn)確是一款真正意義上便攜式地物光譜儀。
無人機機載高光譜成像系統(tǒng)iSpecHyper-VM100
一款基于小型多旋翼無人機機載高光譜成像系統(tǒng),該系統(tǒng)由高光譜成像相機、穩(wěn)定云臺、機載控制與數(shù)據(jù)采集模塊、機載供電模塊等部分組成。無人機機載高光譜成像系統(tǒng)通過獨特的內(nèi)置式或外部掃描和穩(wěn)定控制,有效地解決了在微型無人機搭載推掃式高光譜照相機時,由于振動引起的圖像質(zhì)量較差的問題,并具備較高的光譜分辨率和良好的成像性能。
便攜式高光譜成像系統(tǒng)iSpecHyper-VS1000
專門用于公安刑偵、物證鑒定、醫(yī)學(xué)醫(yī)療、精準(zhǔn)農(nóng)業(yè)、礦物地質(zhì)勘探等領(lǐng)域的最新產(chǎn)品,主要優(yōu)勢具有體積小、幀率高、高光譜分辨率高、高像質(zhì)等性價比特點采用了透射光柵內(nèi)推掃原理高光譜成像,系統(tǒng)集成高性能數(shù)據(jù)采集與分析處理系統(tǒng),高速USB3.0接口傳輸,全靶面高成像質(zhì)量光學(xué)設(shè)計,物鏡接口為標(biāo)準(zhǔn)C-Mount,可根據(jù)用戶需求更換物鏡。