清空記錄
歷史記錄
取消
清空記錄
歷史記錄
基于無人機高光譜遙感的典型草原退化指示種識別2.0
續(xù)上文
3、退化指示種識別與結(jié)果分析
3.1 識別目標波段特征分析
通過野外調(diào)查和現(xiàn)場樣方照片可知,該實驗區(qū)的植被主要為冷蒿,其他植被數(shù)量較少并且類型較多,混雜生長,難以獲取單一物種植被的實地光譜信息。因此,將把實驗區(qū)的地物分為3類,分別為裸土、冷蒿、其他綠色植被。首先,使用訓(xùn)練樣本管理器選擇每個分類對象的訓(xùn)練樣本數(shù)據(jù);其次,在樣本里提取了每個對象數(shù)據(jù)的平均光譜曲線,得到地物的真實的反射率數(shù)據(jù);實測光譜曲線如圖3所示。
圖3 實測反射光譜曲線
由圖3可知,在450~540nm范圍內(nèi)植被的光譜特征差異并不是很明顯,在715~730nm范圍內(nèi)冷蒿與其他綠色植被的光譜曲線有混淆現(xiàn)象。由于存在光譜曲線的混線問題及難以分辨植被類型的問題。因此,通過原始光譜曲線進行微分變換和包絡(luò)線去除變換(如圖4和圖5所示),放大植被波段之間的差異,減少植被之間的光譜曲線的混淆現(xiàn)象。
圖4 微分變換曲線圖
由圖4可知,原始光譜曲線進行離散變量差分方程后,依然存在植被的光譜曲線的混淆的現(xiàn)象。
圖5 包絡(luò)線去除變換光譜曲線
故進一步包絡(luò)線去除變換(圖5)后,位于500nm處的吸收谷,550nm處的反射峰、670nm處的吸收谷,其他綠色植被和冷蒿的光譜曲線有明顯的差異。為了能夠有效地選擇地物特征波段,進一步計算光譜反射率數(shù)據(jù)均值和標準差值,繪制了標準差的誤差棒圖,如圖6所示。
圖6 訓(xùn)練樣本光譜特征曲線和標準差
由圖6可知,在波段700~950nm范圍內(nèi),兩類植被的光譜反射率的標準差值重疊的,不參與植被識別中,故剔除重疊部分,以利于選出識別退化指示種的特征波段。經(jīng)微分變換、包絡(luò)線去除和計算標準差處理后,發(fā)現(xiàn)在500、550、670nm處有明顯的差異,此3個波段滿足了所選的波段信息具有較大的光譜差異的條件,故選取此3個波段作為特征波段并進行特征波段組合。特征波段組合數(shù)據(jù)對細小地物的紋理結(jié)構(gòu)和圖像的色彩差別增強,對退化指示種的識別成為可能。因此,在特征波段組合數(shù)據(jù)基礎(chǔ)上,進行了模型的構(gòu)建。
3.2 構(gòu)建識別模型與驗證
基于軟件,特征波段組合數(shù)據(jù)為底圖,結(jié)合實地調(diào)查數(shù)據(jù),隨機均勻的選取訓(xùn)練樣本,如圖7所示。
圖7 訓(xùn)練樣本分布圖
在此基礎(chǔ)上,采用隨機森林和支持向量機作為分類器,選擇合適的模型參數(shù),對所選擇的訓(xùn)練樣本進行模型訓(xùn)練并分類,2種模型的分類結(jié)果如圖8所示。
圖8 支持向量機和隨機森林分類結(jié)果
為了準確描述2種機器學(xué)習模型的分類精度,本實驗采用混淆矩陣對獨立驗證樣本的分類準確率進行評估。通過混淆矩陣得到分類影像的Kappa系數(shù)、生產(chǎn)者的精度、用戶的精度和整體精度等評估指標,以量化2種模型的性能對分類準確率的貢獻。本實驗中驗證樣本一共選取了600個,與訓(xùn)練樣本的比例為5∶3,對2種模型的性能進行評估,結(jié)果如表2和表3所示。
表2 支持向量機的混淆矩陣結(jié)果統(tǒng)計表
從支持向量機的混淆矩陣結(jié)果(如表2所示)可知,總體精度為96.92%,Kappa系數(shù)為0.95,分類中出現(xiàn)了冷蒿錯分為裸土的有6個、其他綠色植被的有19個、裸土錯分為冷蒿的有5個、其他綠色植被錯分為冷蒿的有7個。因為裸土和其他綠色植被的光譜特征比較明顯的差異,所以錯分的現(xiàn)象不是很明顯。
表3 隨機森林的混淆矩陣結(jié)果統(tǒng)計表
從隨機森林的混淆矩陣結(jié)果(如表3所示),得到的結(jié)果可以看出,總體精度為97.34%,Kappa系數(shù)為0.96。冷蒿和其他綠色植被之間錯分數(shù)量有16例,這可能是因為選取訓(xùn)練樣本時冷蒿與其他綠色植被之間混淆的現(xiàn)象。通過對2種分類方法的精度評價結(jié)果表明,隨機森林的分類精度總體優(yōu)于支持向量機的分類精度。故隨機森林的識別分類效果更佳。
3.3 退化程度的評價分析
對分類識別結(jié)果進行像元統(tǒng)計計算,從結(jié)果(如表4)可知,冷蒿的面積占研究區(qū)的56.8%,其他綠色植被占39.5%。退化指示種的覆蓋度達到了56.8%,從草地退化程度指標看,本實驗區(qū)現(xiàn)狀屬于重度退化草地。
表4 像元統(tǒng)計表
為了準確表述退化指示物種和其他覆蓋類型的聚集程度,為此,利用景觀聚集度指數(shù)AI和分離度指數(shù)SPLIT對分別表征退化指示物種和其他覆蓋類型的聚集和分離程度,其值越小,越緊湊。通過計算SPLIT指數(shù)和AI指數(shù)(如表5所示)可知,隨機森林的SPLIT指數(shù)為3.7294,破碎度較強,支持。
表5 景觀格局指數(shù)統(tǒng)計表
4、總結(jié)
本文對典型草原地物的光譜分析發(fā)現(xiàn),裸土光譜曲線呈現(xiàn)吸收谷,這是由于研究區(qū)的裸土并不是完全沒有植被的,故裸土光譜波段具有吸收谷。退化指示物種和其他綠色植被在可見光波段均表現(xiàn)為“低-高-低”的光譜反射率趨勢,具有典型的植被光譜特征。由于高光譜數(shù)據(jù)波段數(shù)較多,會造成不必要的運算。
本文主要對比分析了傳統(tǒng)的支持向量機和隨機森林分類方法對典型草原退化指示物種識別的有效性。結(jié)果表明隨機森林的分類結(jié)果表現(xiàn)優(yōu)于支持向量機模型,這與楊紅艷的實驗結(jié)果一致。楊紅艷等研究發(fā)現(xiàn)隨機森林模型在30m的飛行高度可以較好地識別植被種類,隨著飛行高度的增加,地物的空間分辨率和反射率降低,使識別較小的植被會有所難度。但本研究由于在50m的飛行高度,利用隨機森林方法對典型草原植物進行分類并獲了較高的識別精度,證明了50m的飛行高度,在識別植被方面研究中具有一定的可行性。研究結(jié)果精度相對較高的原因之一,是因為數(shù)據(jù)采集的時間是在8月份,這正是草原植物的生長旺盛期,光譜特征更加的明顯,更有利于對草原物種的信息提取。
在分類器的選擇中支持向量機的優(yōu)點是小樣本、結(jié)構(gòu)風險最小化、具有更強的泛化能力,隨機森林的優(yōu)點是處理高維數(shù)據(jù)、訓(xùn)練速度快、實現(xiàn)比較簡單。從分類結(jié)果上看是對退化指示物種的識別較好的分類器選擇。支持向量機雖然比隨機森林訓(xùn)練時間更短,訓(xùn)練參數(shù)更少,但是,該研究中支持持向量機相比隨機森林的識別準確率較低,這說明隨機森林模型更適合本研究并具有一定的可行性。具體結(jié)果如下所述:
(1)支持向量機和隨機森林的分類整體準確率分別為96.92%和97.34%,Kappa系數(shù)值分別為0.9537和0.9600。隨機森林效果為優(yōu)。
(2)支持向量機的AI指數(shù)為95.0713,聚集程度較強,分類結(jié)果為聚集。隨機森林的SPLIT指數(shù)為3.7294,破碎度較強,分類結(jié)果為分散,更貼切于實際。
(3)本實驗中退化指示植物的面積占研究區(qū)的56.8%,超過重度退化指標,實驗區(qū)現(xiàn)狀屬于重度退化草地。
本文所進行識別的地物類型較少,在今后的研究中,會擴大地域范圍、增加植被類型、將實驗區(qū)的植被更進一步精確分類;另外,選取的識別方法僅有隨機森林與支持向量機兩種,在下一步的研究中選擇更多的分類方法進行對比,這也是未來研究發(fā)展的方向。
推薦:
便攜式高光譜成像系統(tǒng) iSpecHyper-VS1000
專門用于公安刑偵、物證鑒定、醫(yī)學(xué)醫(yī)療、精準農(nóng)業(yè)、礦物地質(zhì)勘探等領(lǐng)域的最新產(chǎn)品,主要優(yōu)勢具有體積小、幀率高、高光譜分辨率高、高像質(zhì)等性價比特點采用了透射光柵內(nèi)推掃原理高光譜成像,系統(tǒng)集成高性能數(shù)據(jù)采集與分析處理系統(tǒng),高速USB3.0接口傳輸,全靶面高成像質(zhì)量光學(xué)設(shè)計,物鏡接口為標準C-Mount,可根據(jù)用戶需求更換物鏡。